If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6x^2+48x+36=0
a = 6; b = 48; c = +36;
Δ = b2-4ac
Δ = 482-4·6·36
Δ = 1440
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1440}=\sqrt{144*10}=\sqrt{144}*\sqrt{10}=12\sqrt{10}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(48)-12\sqrt{10}}{2*6}=\frac{-48-12\sqrt{10}}{12} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(48)+12\sqrt{10}}{2*6}=\frac{-48+12\sqrt{10}}{12} $
| 750x+3x=100 | | 2(1/2x+2)+3x=12 | | 2(x+2)=x-42 | | 5/8x=3/7 | | X-x+36=36 | | 2=(3y-8) | | 2x/6(-1)=30 | | 0.5(7d+4)=7-1.5d0.5(7d+4)=7−1.5d0 | | x+15/5x-3=7/9 | | -(c-1)+5=2(c+3)-5 | | -(c-1)+5=2(c+3)-1 | | 180=15x-30 | | -(c-1)+5=2(c+3)-3c | | -(c-1)+5=2(c+3)-c | | 3x=3x-18, | | 3c+5=3c-5 | | -2c+1=-2c+2 | | 180=5y-15 | | 10(0.4+0.5x)=4x10 | | (5x+2)=(x+26) | | -5c+1=-5c+1 | | 3x−10=18−x | | 3/x+4=9/2 | | 180=10x+15 | | 2x+2(2x+5)=4 | | 6n12+4n=8n | | 7n+2(2n-8)-2=N | | 3(c-3)+2c=-(c-5)+4 | | 1(c-3)+2c=-(c-5)+4 | | 2x+154=334 | | -3(c-3)+2c=-(c-5)+4 | | 6n2+5n-6=0 |